設(shè)角動(dòng)量Jˆ1和Jˆ2彼此獨(dú)立,其量子數(shù)分別為,在偶合表象中寫出總角動(dòng)量Jˆ1+Jˆ2的所有本征態(tài)。
您可能感興趣的試卷
最新試題
?不考慮無微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對稱的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
當(dāng)α≠0,Ω≠0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
?Heisenberg用他的量子化條件研究一維簡諧振動(dòng),得到一維諧振子的動(dòng)能和勢能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
波長為λ=0.01nm的X射線光子與靜止的電子發(fā)生碰撞。在與入射方向垂直的方向上觀察時(shí),散射X射線的波長為多大?碰撞后電子獲得的能量是多少eV?
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問題。
?de Broglie將在自身質(zhì)心系中的粒子視為簡諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
?de Broglie認(rèn)為Bohr氫原子的軌道長度應(yīng)該是電子波長的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級公式。
用分離變量法求解含時(shí)Schr?dinger方程,解得定態(tài)能量為E的波函數(shù)的時(shí)間項(xiàng)為()。
一維運(yùn)動(dòng)的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
?Heisenberg矩陣力學(xué)的力學(xué)量隨時(shí)間變化,而量子態(tài)不隨時(shí)間變化,由此可知Heisenberg矩陣力學(xué)實(shí)質(zhì)上是()繪景下能量表象的量子力學(xué)。