A.OLAP主要是關(guān)于如何理解聚集的大量不同的數(shù)據(jù).它與OTAP應用程序不同
B.與OLAP應用程序不同,OLTP應用程序包含大量相對簡單的事務
C.OLAP的特點在于事務量大,但事務內(nèi)容比較簡單且重復率高
D.OLAP是以數(shù)據(jù)倉庫為基礎(chǔ)的,但其最終數(shù)據(jù)來源與OLTP一樣均來自底層的數(shù)據(jù)庫系統(tǒng),兩者面對的用戶是相同的
您可能感興趣的試卷
你可能感興趣的試題
關(guān)于OLAP的特性,下面正確的是()
(1)快速性(2)可分析性(3)多維性(4)信息性(5)共享性
A.(1)(2)(3)
B.(2)(3)(4)
C.(1)(2)(3)(4)
D.(1)(2)(3)(4)(5)
A.在線性
B.對用戶的快速響應
C.互操作性
D.多維分析
A.粒度是指數(shù)據(jù)倉庫小數(shù)據(jù)單元的詳細程度和級別
B.數(shù)據(jù)越詳細,粒度就越小,級別也就越高
C.數(shù)據(jù)綜合度越高,粒度也就越大,級別也就越高
D.粒度的具體劃分將直接影響數(shù)據(jù)倉庫中的數(shù)據(jù)量以及查詢質(zhì)量
A.基本元數(shù)據(jù)與數(shù)據(jù)源,數(shù)據(jù)倉庫,數(shù)據(jù)集市和應用程序等結(jié)構(gòu)相關(guān)的信息
B.基本元數(shù)據(jù)包括與企業(yè)相關(guān)的管理方面的數(shù)據(jù)和信息
C.基本元數(shù)據(jù)包括日志文件和簡歷執(zhí)行處理的時序調(diào)度信息
D.基本元數(shù)據(jù)包括關(guān)于裝載和更新處理,分析處理以及管理方面的信息
A.數(shù)據(jù)倉庫隨時間的變化不斷增加新的數(shù)據(jù)內(nèi)容
B.捕捉到的新數(shù)據(jù)會覆蓋原來的快照
C.數(shù)據(jù)倉庫隨事件變化不斷刪去舊的數(shù)據(jù)內(nèi)容
D.數(shù)據(jù)倉庫中包含大量的綜合數(shù)據(jù),這些綜合數(shù)據(jù)會隨著時間的變化不斷地進行重新綜合
最新試題
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
通過統(tǒng)計學可以推測擲兩個撒子同時選中3點的幾率。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
當反向傳播算法運行到達到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
完整性,一致性,時效性,唯一性,有效性,準確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
數(shù)據(jù)存儲體系中并不牽扯計算機網(wǎng)絡(luò)這一環(huán)節(jié)。
通常,當試圖從大量觀察中學習具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓練數(shù)據(jù)的可能性。