您可能感興趣的試卷
你可能感興趣的試題
最新試題
?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
?Heisenberg矩陣力學(xué)的力學(xué)量隨時(shí)間變化,而量子態(tài)不隨時(shí)間變化,由此可知Heisenberg矩陣力學(xué)實(shí)質(zhì)上是()繪景下能量表象的量子力學(xué)。
1921年Ladenburg建立了經(jīng)典色散理論的強(qiáng)度因子和Einstein()之間的聯(lián)系,第一次把經(jīng)典的色散理論和量子的能級(jí)躍遷聯(lián)系起來。
?哥本哈根解釋看來經(jīng)典因果律涉及到測(cè)量時(shí)()成立。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ?,向?qū)?chǎng)本身沒有能量和動(dòng)量。
當(dāng)α≠0,Ω≠0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。