級(jí)數(shù)前幾項(xiàng)和sn=a1+a2+…+an,若an≥0,判斷數(shù)列{sn}有界是級(jí)數(shù)an收斂的什么條件()?
A.充分條件,但非必要條件
B.必要條件,但非充分條件
C.充分必要條件
D.既非充分條件,又非必要條件
您可能感興趣的試卷
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(一)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(二)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(二)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(三)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(三)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(四)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(四)
你可能感興趣的試題
正項(xiàng)級(jí)數(shù)an,判定(an+1)/an=q<1是此正項(xiàng)級(jí)數(shù)收斂的什么條件()?
A.充分條件,但非必要條件
B.必要條件,但非充分條件
C.充分必要條件
D.既非充分條件,又非必要條件
設(shè)L為|x|+|y|=1正向一周,則(-ydx+xdy)/(|x|+|y|)的值為:()
A.2
B.1
C.0
D.4
曲線積分-2x3ydx+x2y2dy,其中L是由不等式x2+y2≥1及x2+y2≤2y所確定的區(qū)域D的正向邊界,則其值為:()
A.0
B.1
C.2π
D.π
設(shè)L是圓周x2+y2=a2(a>0)負(fù)向一周,則曲線積分(x3-x2y)dx+(xy3-y3)dy的值為:()
A.πa4
B.-πa4
C.-(π/2)a4
D.(π/2)a4
曲線積分(3dx+dy)/(|x|+|y|),其中L為由點(diǎn)(1,0)經(jīng)(0,1)至(-1,0)的折線,則其值是:()
A.-4
B.-2
C.0
D.-6
最新試題
廣義積分e-2xdx=()
若連續(xù)函數(shù)y=f(x)在x0點(diǎn)不可導(dǎo),則曲線y=f(x)在(x0,f(x0))點(diǎn)沒有切線.
下列定積分為零的是()
設(shè)函數(shù)f(x)=丨x丨,則函數(shù)在點(diǎn)x=0處()
微分方程的含有任意常數(shù)的解是該微分方程的通解。
設(shè)函數(shù) 在x=0處連續(xù),則a=()
設(shè)f(x-1)=x2,則f(x+1)=()
設(shè)D為圓形區(qū)域x2+y2≤1,=()
若z=f(x,y)在(x0,y0)處的兩個(gè)一階偏導(dǎo)數(shù)存在,則函數(shù)z=f(x,y)在(x0,y0)處可微
積分的值等于:()