A.m2=n,
B.
C.
D.
您可能感興趣的試卷
你可能感興趣的試題
半圓形閘門半徑為R,將其垂直放入水中,且直徑與水面齊,設(shè)水密度ρ=1。若坐標(biāo)原點取在圓心,x軸正向朝下,則閘門所受壓力p為()。
A.A
B.B
C.C
D.D
A.(1,2)
B.(1,-2)
C.(-1,2)
D.(-1,-2)
A.4πS
B.(1+4π)S
C.(2+4π)S
D.(3+4π)S
函數(shù)是()。
A.非奇非偶函數(shù)
B.僅有最小值的奇函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值又有最小值的偶函數(shù)
設(shè)隨機變量X1,X2,……,Xn(n>1)獨立分布,且方差σ2>0,記,則與X1的相關(guān)系數(shù)為()。
A.-1
B.O
C.
D.1
最新試題
甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。
已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時,(ka-b)⊥(a+2b)。
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足
在三角形ABC中,∠BAC=90°,AB=AC,若點D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。
已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時,求實數(shù)λ,使a+λb的值最小,并對這一結(jié)論作出幾何解釋。
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
求.
為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實際相結(jié)合的原則?
已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項和Tn。
案例:某教師在對根與系數(shù)關(guān)系綜合運用教學(xué)時,給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。