您可能感興趣的試卷
你可能感興趣的試題
證明在表象中。
在(L2,LZ)表象中,算符,試證明其本征值為0,±h。
最新試題
?由經(jīng)典物理的Newton定律和Maxwell電磁理論,原子會(huì)不穩(wěn)定的,電子()坍縮到原子核。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
設(shè)電子處于動(dòng)量為的態(tài),將哈密頓量中的作為微擾,寫(xiě)出能量本征值和本征函數(shù)到一級(jí)近似。
利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問(wèn)題,歸結(jié)為求解()矩陣的本征值。
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級(jí)公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問(wèn)題。
?不考慮無(wú)微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱(chēng)的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
用分離變量法求解含時(shí)Schr?dinger方程,解得定態(tài)能量為E的波函數(shù)的時(shí)間項(xiàng)為()。