求出實(shí)物粒子德布羅意波長(zhǎng)與粒子動(dòng)能EK和靜止質(zhì)量m0的關(guān)系,并得出:
EK<
EK>>m0c2時(shí),λ≈hc/EK.
您可能感興趣的試卷
最新試題
波長(zhǎng)為λ=0.01nm的X射線光子與靜止的電子發(fā)生碰撞。在與入射方向垂直的方向上觀察時(shí),散射X射線的波長(zhǎng)為多大?碰撞后電子獲得的能量是多少eV?
?經(jīng)典儀器測(cè)量系統(tǒng)時(shí)會(huì)()得到系統(tǒng)的某個(gè)本征值,同時(shí)系統(tǒng)波函數(shù)也坍縮到系統(tǒng)相應(yīng)的這個(gè)本征態(tài)。
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ?,向?qū)?chǎng)本身沒有能量和動(dòng)量。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
?由de Broglie關(guān)系和()方程也能導(dǎo)出定態(tài)Schr?dinger方程。
多世界解釋認(rèn)為人們測(cè)量時(shí)系統(tǒng)的波函數(shù)沒有坍縮,但觀測(cè)的一瞬間宇宙分裂為多個(gè)宇宙,不同宇宙中的同一個(gè)觀察者()進(jìn)行交流和通信。
?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。