非簡(jiǎn)并定態(tài)微擾理論中第n個(gè)能級(jí)的一級(jí)修正項(xiàng)為()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
非簡(jiǎn)并定態(tài)微擾理論中第個(gè)能級(jí)的表達(dá)式是(考慮二級(jí)近似)()
A.A
B.B
C.C
D.D
算符,則對(duì)易關(guān)系式等于()
A.A
B.B
C.C
D.D
A.不改變算符的本征值,但可改變其本征矢
B.不改變算符的本征值,也不改變其本征矢
C.改變算符的本征值,但不改變其本征矢
D.即改變算符的本征值,也改變其本征矢
幺正矩陣的定義式為()
A.A
B.B
C.C
D.D
在表象中,F(xiàn)的歸一化本征態(tài)分別為()
A.A
B.B
C.C
D.D
最新試題
1921年Ladenburg建立了經(jīng)典色散理論的強(qiáng)度因子和Einstein()之間的聯(lián)系,第一次把經(jīng)典的色散理論和量子的能級(jí)躍遷聯(lián)系起來(lái)。
設(shè)電子處于動(dòng)量為的態(tài),將哈密頓量中的作為微擾,寫(xiě)出能量本征值和本征函數(shù)到一級(jí)近似。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
用分離變量法求解含時(shí)Schr?dinger方程,解得定態(tài)能量為E的波函數(shù)的時(shí)間項(xiàng)為()。
多世界解釋認(rèn)為人們測(cè)量時(shí)系統(tǒng)的波函數(shù)沒(méi)有坍縮,但觀測(cè)的一瞬間宇宙分裂為多個(gè)宇宙,不同宇宙中的同一個(gè)觀察者()進(jìn)行交流和通信。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ?,向?qū)?chǎng)本身沒(méi)有能量和動(dòng)量。
一維運(yùn)動(dòng)的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
?不考慮無(wú)微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱(chēng)的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級(jí)的寬度時(shí),需要使用Heisenberg()不確定關(guān)系。