表示沿x方向平移距離a算符.證明下列形式波函數(shù)(Bloch波函數(shù))
是Dx(a)的本征態(tài),相應(yīng)的本征值為e-ika
您可能感興趣的試卷
最新試題
?Heisenberg用他的量子化條件研究一維簡諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級(jí)的寬度時(shí),需要使用Heisenberg()不確定關(guān)系。
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
當(dāng)α≠0,Ω≠0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
?de Broglie將在自身質(zhì)心系中的粒子視為簡諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
?經(jīng)典儀器測(cè)量系統(tǒng)時(shí)會(huì)()得到系統(tǒng)的某個(gè)本征值,同時(shí)系統(tǒng)波函數(shù)也坍縮到系統(tǒng)相應(yīng)的這個(gè)本征態(tài)。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
1921年Ladenburg建立了經(jīng)典色散理論的強(qiáng)度因子和Einstein()之間的聯(lián)系,第一次把經(jīng)典的色散理論和量子的能級(jí)躍遷聯(lián)系起來。