問(wèn)答題設(shè)屬于能級(jí)E有三個(gè)簡(jiǎn)并態(tài)y1,y2和y3,彼此線(xiàn)形獨(dú)立,但不正交,試?yán)盟鼈儤?gòu)成一組彼此正交歸一的波函數(shù)。

您可能感興趣的試卷

最新試題

利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問(wèn)題,歸結(jié)為求解()矩陣的本征值。

題型:?jiǎn)雾?xiàng)選擇題

設(shè)電子處于動(dòng)量為的態(tài),將哈密頓量中的作為微擾,寫(xiě)出能量本征值和本征函數(shù)到一級(jí)近似。

題型:?jiǎn)柎痤}

Dirac發(fā)現(xiàn)兩個(gè)物理量的對(duì)易子xy-yx等于()乘以這兩個(gè)物理量的經(jīng)典泊松括號(hào){x,y}。

題型:?jiǎn)雾?xiàng)選擇題

?不考慮無(wú)微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱(chēng)的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。

題型:?jiǎn)雾?xiàng)選擇題

用分離變量法求解含時(shí)Schr?dinger方程,解得定態(tài)能量為E的波函數(shù)的時(shí)間項(xiàng)為()。

題型:?jiǎn)雾?xiàng)選擇題

?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說(shuō)明處于定態(tài)n的諧振子的總能量()。

題型:?jiǎn)雾?xiàng)選擇題

?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。

題型:?jiǎn)雾?xiàng)選擇題

一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。

題型:?jiǎn)雾?xiàng)選擇題

1921年Ladenburg建立了經(jīng)典色散理論的強(qiáng)度因子和Einstein()之間的聯(lián)系,第一次把經(jīng)典的色散理論和量子的能級(jí)躍遷聯(lián)系起來(lái)。

題型:?jiǎn)雾?xiàng)選擇題

光量子的本質(zhì)是()電磁場(chǎng)。

題型:?jiǎn)雾?xiàng)選擇題