在有k個解釋變量的經(jīng)典多元線性回歸模型中,OLS的估計值可以寫作()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
A.隨機干擾項同方差
B.隨機干擾項零均值
C.隨機干擾項與解釋變量之間不相關(guān)
D.隨機干擾項服從正態(tài)分布
有如下聯(lián)立方程模型。其中,qd和qs分別表示牛奶的需求量和供給量,p表示牛奶價格,x為收入水平。則關(guān)于模型識別中正確的是():
A.需求模型可以識別
B.供給模型可以識別
C.供求模型都可以識別
D.供求模型都不可以識別
在線性概率模型(LPM)估計中,,rain是虛擬變量(如果下雨為1,否則為0),winter為虛擬變量(1表示冬天,0表示其他季節(jié)),latitude為所描述區(qū)域的緯度,winter的參數(shù)系數(shù)解釋是什么?()
A.平均下來,在冬天里,其他條件不變的情況下下雨的可能性會增加30%
B.平均下來,在冬天里,其他條件不變的情況下下雨的可能性會增加0.3%
C.平均下來,在冬天里,其他條件不變的情況下下雨的可能性會增加30個百分點
D.以上都不對。
A.系數(shù)存在向下的偏差,可能為負(fù)
B.系數(shù)存在向下的偏差,但不能為負(fù)
C.系數(shù)存在向上的偏差
D.系數(shù)不會存在偏差
計量模型中,C代表個人消費支出,x表示收入,則的含義是什么?()
A.意味著消費變量的95.4%可以用收入變量解釋
B.回歸系數(shù)的95.4%可以解釋消費
C.意味著收入變量的95.4%可以用消費變量解釋
D.以上都不對
最新試題
在簡單線性回歸模型y=β0+β1x+u中,假定E(u)≠0。令α0=E(u)。證明:這個模型總可以改寫為另一種形式:斜率與原來相同,但截距和誤差有所不同,并且新的誤差期望值為零。
由于簡單線性回歸與現(xiàn)實經(jīng)濟(jì)現(xiàn)象相關(guān)很遠(yuǎn),因此預(yù)測沒有任何意義。
論述計量經(jīng)濟(jì)學(xué)在經(jīng)濟(jì)政策制定中的作用和重要性。
下列哪些是計量經(jīng)濟(jì)學(xué)的基本假設(shè)?()
關(guān)于X和Y兩個變量的樣本相關(guān)系數(shù),說法錯誤的是()
在計量模型中,X、Y代表參數(shù)和表示變量。
如果一個時間序列中的數(shù)據(jù)與其自身過去的數(shù)據(jù)存在相關(guān)性,那么這個時間序列具有自相關(guān)性。
邊際分析、彈性分析、乘數(shù)分析等屬于經(jīng)濟(jì)結(jié)構(gòu)分析。
在t檢驗過程中,如果小概率事件竟然發(fā)生了,就認(rèn)為原假設(shè)不真。
除了模型設(shè)定正確外,能否獲得用于計量分析的合適的樣本數(shù)據(jù),對于經(jīng)濟(jì)研究非常重要。