微分方程y″-5y′+6y=xe2x的特解形式是:()
A.Ae2x+(Bx+C.
B.(Ax+B.e2x
C.x2(Ax+B.e2x
D.x(Ax+B.e2x
您可能感興趣的試卷
你可能感興趣的試題
已知r1=3,r2=-3是方程y″+py′+q=0(p和q是常數(shù))的特征方程的兩個根,則該微分方程是下列中哪個方程()?
A.y″+9y′=0
B.y″-9y′=0
C.y″+9y=0
D.y″-9y=0
設(shè)f1(x)和f2(x)為二階常系數(shù)線性齊次微分方程y″+py′+g=0的兩個特解,若由f1(x)和f2(x)能構(gòu)成該方程的通解,下列哪個方程是其充分條件()?
A.f1(x)·f′2(x)-f2(x)f′1(x)=0
B.f1(x)·f′2(x)-f2(x)·f′1(x)≠0
C.f1(x)f′2(x)+f2(x)·f′1(x)=0
D.f1(x)f′2(x)+f2(x)f′1(x)≠0
A.y=f(x)+c
B.y=f(x)-+c
C.y=f(x)-1+c
D.y=f(x)-1+c
滿足方程f(x)+2f(x)dx=x2的解f(x)是:()
A.-(1/2)e-2x+x+1/2
B.(1/2)e-2x+x-1/2
C.ce-2x+x-1/2
D.ce-2x+x+1/2
A.y=y1(x)+
B.y=y1(x)+c
C.y=y1(x)++c
D.y=y1(x)+c
最新試題
的垂直漸進(jìn)線有()條
曲面xyz=1上平行于x+y+z+3=0的切平面方程是:()
設(shè)f(x)為連續(xù)函數(shù),則等于()
微分方程的含有任意常數(shù)的解是該微分方程的通解。
曲線的漸近線的情況是()
設(shè)偶函數(shù)f(x)在區(qū)間(-1,1)內(nèi)具有二階導(dǎo)數(shù),且f″(0)=f′(0)+1,則f(0)為f(x)的一個極小值。
曲面z=x2+y2在(-1,2,5)處的切平面方程是:()
f(x)=x+在[0,4]上的最大值為()
設(shè)D是由不等式|x|+|y|≤1所確定的有界區(qū)域,則二重積分|x|dxdy的值是:()
設(shè)單調(diào)可微函數(shù)f(x)的反函數(shù)為g(x),f(1)=3,f′(1)=2,f″(3)=6則g′(3)=()