問答題

請以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計。
(1)教學(xué)目標(biāo)
(2)本節(jié)課的教學(xué)重、難點
(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計意圖


您可能感興趣的試卷

你可能感興趣的試題

5.問答題

案例:閱讀下列兩位教師的教學(xué)過程。
教師甲的教學(xué)過程:
師:在一個風(fēng)雨交加的夜里,從某水庫閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長的線路,如何迅速查出故障所在?
如果沿著線路一小段一小段查找,困難很多。每查一個點要爬一次10km長的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?
生1:直接一個個電線桿去尋找。
生2:先找中點,縮小范圍,再找剩下來一半的中點。
師:生2的方法是不是對呢?我們一起來考慮一下。

如圖,維修工人首先從中點C查,用隨身帶的話機向兩個端點測試時,發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點D,這次發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD中點E來查。每查一次,可以把待查的線路長度縮減一半,如此查下去,不用幾次,就能把故障點鎖定在一兩根電線桿附近。
師:我們可以用一個動態(tài)過程來展示一下(展示多媒體課件)。
在一條線段上找某個特定點,可以通過取中點的方法逐步縮小特定點所在的范圍(即二分法思想)。
教師乙的教學(xué)過程:
師:大家都看過李詠主持的《幸運52》吧,今天咱也試一回(出示游戲:看商品、猜價格)。
生:積極參與游戲,課堂氣氛活躍。
師:競猜中,"高了"、"低了"的含義是什么?如何確定價格的最可能的范圍?
生:主持人"高了、低了"的回答是判斷價格所在區(qū)間的依據(jù)。
師:如何才能更快的猜中商品的預(yù)定價格?
生:回答各異。
老師由此引導(dǎo)學(xué)生說出"二分法"的思想,并向同學(xué)們引出二分法的概念。
問題:
(1)分析兩種情景引入的特點。
(2)結(jié)合案例,說明為什么要學(xué)習(xí)用二分法求方程的近似解。

最新試題

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實際相結(jié)合的原則?

題型:問答題

已知直線l:ax+y=1在矩陣對應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實數(shù)a,b的值;(2)若點P(x0,y0),在直線l上,且,求點P的坐標(biāo)。

題型:問答題

如何處理面向全體學(xué)生與關(guān)注學(xué)生個體差異的關(guān)系?

題型:問答題

一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。

題型:問答題

,(1)求An;(2)求(A+2E)n。

題型:問答題

已知函數(shù)。(1)當(dāng)時,求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實數(shù)a的取值范圍。

題型:問答題

已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。

題型:問答題

案例:某教師在對基本初等函數(shù)進行教學(xué)時,給學(xué)生出了如下一道練習(xí)題:問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。

題型:問答題

已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時,求實數(shù)λ,使a+λb的值最小,并對這一結(jié)論作出幾何解釋。

題型:問答題

在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為()海里。

題型:填空題