一維諧振子在t=0時(shí)的歸一化波函數(shù)為所描寫的態(tài)中式中,式中Ψn(x)是諧振子的能量本征函數(shù)。
求:在Ψ(x,0)態(tài)中能量的可能值,相應(yīng)的概率及平均值。您可能感興趣的試卷
最新試題
當(dāng)α=Ω=0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
光量子的本質(zhì)是()電磁場(chǎng)。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
當(dāng)α≠0,Ω≠0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問題,歸結(jié)為求解()矩陣的本征值。
用分離變量法求解含時(shí)Schr?dinger方程,解得定態(tài)能量為E的波函數(shù)的時(shí)間項(xiàng)為()。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
1921年Ladenburg建立了經(jīng)典色散理論的強(qiáng)度因子和Einstein()之間的聯(lián)系,第一次把經(jīng)典的色散理論和量子的能級(jí)躍遷聯(lián)系起來。
?不考慮無(wú)微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。