您可能感興趣的試卷
你可能感興趣的試題
最新試題
甲乙兩臺機床生產(chǎn)同一種零件,在全面質(zhì)量考核中,統(tǒng)計出甲乙機床每天出現(xiàn)次品數(shù)ξ、η的分布列分別為,如果兩臺機床的產(chǎn)量相同,試比較它們的生產(chǎn)質(zhì)量。
設燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。
某車間有200臺機床獨立工作,每臺機床在工作時間內(nèi)有70%的時間開動,每臺機床工作時需耗電1kw,問應供應多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。
某年級進行英語和計算機應用兩門課程的測驗,經(jīng)統(tǒng)計,英語的平均分數(shù)為80分,標準差為6分;計算機應用的平均分數(shù)為70分,標準差為9分。某學生英語考得85分,計算機應用考得80分,試問該生哪門課程成績在全年級相對較好?
樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計算樣本平均值和樣本方差。
某型號日光燈管的使用壽命(單位:h)服從參數(shù)λ=1/2000的指數(shù)分布,任取一只這種燈管,求它能正常使用1500h以上的概率。
某尋呼臺在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過10次的概率。
設隨機變量ξ的分布列為,求E(ξ),E(-ξ+1),E(ξ2)
某市一次全.市初三英語會考的考試成績可以用正態(tài)分布來描述,其平均成績?yōu)棣?70(分),標準差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。
求矩陣的逆矩陣: