線性諧振子的能量本征函數(shù)ψ1(x)在能量表象中的表示是()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
一粒子在一維無限深勢阱中運動的狀態(tài)為其中ψ1(x)、ψ2(x)是其能量本征函數(shù),則ψ(x)在能量表象中的表示是()
A.A
B.B
C.C
D.D
力學(xué)量算符對應(yīng)于本征值為x′的本征函數(shù)在坐標(biāo)表象中的表示是()
A.A
B.B
C.C
D.D
動量為p′的自由粒子的波函數(shù)在坐標(biāo)表象中的表示是它在動量表象中的表示是()
A.A
B.B
C.C
D.D
對易關(guān)系式等于()
A.A
B.B
C.C
D.D
A.是體系角動量平方算符、角動量Z分量算符的共同本征函數(shù)
B.是體系角動量平方算符的本征函數(shù),不是角動量Z分量算符的本征函數(shù)
C.不是體系角動量平方算符的本征函數(shù),是角動量Z分量算符的本征函數(shù)
D.即不是體系角動量平方算符的本征函數(shù),也不是角動量Z分量算符的本征函數(shù)
最新試題
一維諧振子能級的簡并度是()。
已知W為對角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
一維運動的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?,該場決定了粒子在某一向?qū)窂降模ǎ驅(qū)霰旧頉]有能量和動量。
?de Broglie將在自身質(zhì)心系中的粒子視為簡諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡諧振動的運動學(xué)方程就得到de Broglie物質(zhì)波。
Einstein對比了短波低能量密度時的黑體輻射和n個原子組成的粒子體系的(),提出了光量子假設(shè)。
設(shè)電子處于動量為的態(tài),將哈密頓量中的作為微擾,寫出能量本征值和本征函數(shù)到一級近似。
被激發(fā)到n=20激發(fā)態(tài)的氫原子退激時輻射出()種波長的譜線。(不考慮精細(xì)結(jié)構(gòu))
利用Schr?dinger方程求解Stark效應(yīng)簡并微擾問題,歸結(jié)為求解()矩陣的本征值。
?Schr?dinger波動力學(xué)的力學(xué)量部隨時間變化,而量子態(tài)隨時間變化,由此可知Schr?dinger波動力學(xué)實質(zhì)上是()繪景下坐標(biāo)表象的量子力學(xué)。