問(wèn)答題
證明解線性方程組Ax=b的雅可比迭代收斂,其中
您可能感興趣的試卷
你可能感興趣的試題
2.問(wèn)答題
若用雅可比迭代法求解方程組迭代收斂的充要條件是。
3.問(wèn)答題
有常微分方程的初值問(wèn)題,試用泰勒展開(kāi)法,構(gòu)造線性兩步法數(shù)值計(jì)算公式,使其具有二階精度,并推導(dǎo)其局部截?cái)嗾`差主項(xiàng)。
4.問(wèn)答題
證明:梯形公式
無(wú)條件穩(wěn)定。
最新試題
用改進(jìn)歐拉法和梯形法解初值問(wèn)題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
題型:?jiǎn)柎痤}
定義內(nèi)積(f,g)=,試在H1=中尋求對(duì)于f(x)=x的最佳平方逼近多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
設(shè)f(x)=x4,試?yán)美窭嗜詹逯涤囗?xiàng)定理給出f(x)以-1,0,1,2為節(jié)點(diǎn)的插值多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
當(dāng)f(x)=x時(shí),求證Bn(f,x)=x。
題型:?jiǎn)柎痤}
求函數(shù)f(x)=1/x在指定區(qū)間[1,3]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}
求方程的剛性比,用四階R-K方法求解時(shí),最大步長(zhǎng)能取多少?
題型:?jiǎn)柎痤}
給定數(shù)據(jù)表如下;試求三次樣條插值,并滿足條件:。
題型:?jiǎn)柎痤}
設(shè)f(x)∈C2[a,b]且f(a)=f(b)=0,求證:。
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
要使求積公式具有2次代數(shù)精確度,則x1=(),A1=()
題型:填空題