?設(shè)系統(tǒng)的狀態(tài)方程為則下列哪種情況時(shí)該系統(tǒng)不是完全能控的?()
A.a=1,b=1
B.a=-1,b=1
C.a=-1,b=-1
D.a=1,b=-1
您可能感興趣的試卷
你可能感興趣的試題
?考慮如下狀態(tài)空間描述的系統(tǒng)模型?則該系統(tǒng)()。
A.能控且能觀測(cè)
B.能控但不能觀測(cè)
C.不能控但能觀測(cè)
D.不能控且不能觀測(cè)
A.輸出可由狀態(tài)完全反映
B.狀態(tài)可由輸出完全反映
C.輸出可由輸入完全反映
D.狀態(tài)可由輸入完全反映
某單輸入-單輸出系統(tǒng)的狀態(tài)空間模型為??則該系統(tǒng)的極點(diǎn)為()。
A.1,3
B.-1,3
C.1,-3
D.-1,-3
A.狀態(tài)空間模型(A ,B ,C)的極點(diǎn)等于矩陣A的特征根
B.狀態(tài)空間模型中,系統(tǒng)的輸出是由微分方程決定的
C.如果系統(tǒng)存在多個(gè)狀態(tài),則這些狀態(tài)可以寫成對(duì)角矩陣的形式,已獲得狀態(tài)空間模型
D.給定系統(tǒng)的狀態(tài)微分方程,總能夠求出狀態(tài)的數(shù)學(xué)表達(dá)式
A.系統(tǒng)的狀態(tài)空間模型包括狀態(tài)方程和輸出方程
B.狀態(tài)空間模型不僅可以描述時(shí)不變系統(tǒng),還可以描述時(shí)變系統(tǒng)
C.一個(gè)給定的系統(tǒng)只存在一組動(dòng)態(tài)方程
D.狀態(tài)空間模型存在多種等效的標(biāo)準(zhǔn)型
最新試題
針對(duì)終點(diǎn)可變的變分問(wèn)題,變分在終點(diǎn)的值和終點(diǎn)的變分是()的。
對(duì)于線性系統(tǒng),如果其平衡點(diǎn)是漸近穩(wěn)定的,則一定是大范圍漸近()的。
對(duì)線性定常系統(tǒng),狀態(tài)觀測(cè)器的設(shè)計(jì)和狀態(tài)反饋控制器的設(shè)計(jì)可以分開進(jìn)行,互不影響,稱為()原理。
在狀態(tài)空間描述系統(tǒng)時(shí),狀態(tài)的選擇是()。
哪個(gè)不是20世紀(jì)三大科技()
非線性系統(tǒng)狀態(tài)的運(yùn)動(dòng)規(guī)律和改變這些規(guī)律的可能性與實(shí)施方法,建立和揭示系統(tǒng)結(jié)構(gòu)、參數(shù)、行為和性能之間的關(guān)系。
離散系統(tǒng)模擬結(jié)構(gòu)圖中的單位延時(shí)器相當(dāng)于連續(xù)系統(tǒng)模擬結(jié)構(gòu)圖中的()。
降維觀測(cè)器設(shè)計(jì)時(shí),原系統(tǒng)初始狀態(tài)為3,反饋矩陣增益為6,要使觀測(cè)誤差為零,則觀測(cè)器的初始狀態(tài)應(yīng)為()。
對(duì)于一般的系統(tǒng)如何構(gòu)造李雅普諾夫函數(shù)還沒有一個(gè)統(tǒng)一的方法,()是一種尋找李雅普諾夫函數(shù)較為實(shí)用的方法。
現(xiàn)代控制理論運(yùn)用哪些數(shù)學(xué)工具()